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Coexistence of individuals with different species or phenotypes is often found in nature in spite of compe-
tition between them. Stable coexistence of multiple types of individuals have implications for maintenance of
ecological biodiversity and emergence of altruism in society, to name a few. Various mechanisms of coexist-
ence including spatial structure of populations, heterogeneous individuals, and heterogeneous environments,
have been proposed. In reality, individuals disperse and interact on complex networks. We examine how
heterogeneous degree distributions of networks influence coexistence, focusing on models of cyclically com-
peting species. We show analytically and numerically that heterogeneity in degree distributions promotes stable
coexistence.
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I. INTRODUCTION

How to maintain or prevent coexistence of competing
multiple types of individuals is a key issue in various areas.
For example, coexistence of multiple species in ecological
habitats implies stable biodiversity realized in nature �1,2�.
Coexistence of multiple types of players in evolutionary
games implies survival of altruistic players in the sea of self-
ish players �3�. Coexistence of disease-free and infected in-
dividuals implies an endemic state that should be suppressed
usually �4�.

Mechanisms of coexistence have been a central theoreti-
cal question because complexity of a population state �i.e.,
coexistence� and stability are often contradicting require-
ments �5–7�. Coexistence in population dynamics has been
explained by, for example, nonequilibrium-state interpreta-
tion, habitat subdivision, heterogeneity in species such as
heterogeneous dispersal speeds, and heterogeneity in envi-
ronments �1,2,6,8�. Spatial structure such as the square lat-
tice also limits diffusion and promotes coexistence. In this
case, each species is clustered in different regions of the
lattice �9–12�. However, real-world interaction quite often
occurs on contact networks of individuals that are more com-
plex than the square lattice. Most real networks have the
small-world and scale-free properties �e.g., Refs. �13,14��.
The small-world property is equivalent to the combination of
small average distance between vertices and large clustering,
or abundance of densely connected small subgraphs such as
triangles. A scale-free network is defined by a degree distri-
bution, or the distribution of the number of contacts �edges�
that each vertex has, which follows a power law, pk�k−�.
Here pk is the probability that a vertex has degree k. The
scale-free property may be too idealistic to describe contact
networks underlying real population dynamics. Even so, it
seems likely that different patches or individuals are en-
dowed with different connectivity to others.

In terms of networks, some known mechanisms of coex-
istence benefit from the regular lattices, the one-dimensional
continuous line, the two-dimensional continuous plane, and
the complete graph �mean field situation�, in which all the
vertices are considered to share the same degree �see the

papers cited above and references therein�. In random
graphs, which are sometimes used in this context �5�, the
vertex degree obeys the Poisson distribution. However, the
real degree distribution may be even broader.

Here we investigate how possibility of coexistence is af-
fected by heterogeneous degree distributions of contact net-
works, not by heterogeneous environments other than
network-based ones or heterogeneous individuals. Among
various competitive relationships among different pheno-
types, we focus on cyclic competition of three species, which
is a minimal case.

Cyclic competition is actually abundant in nature. For ex-
ample, tropical marine ecosystems �15� and vertebrate com-
munities in high-arctic areas �16� include cyclic dominance
relations composed of a couple of organisms �also see Ref.
�7��. Real microbial communities of Escherichia coli �17�
and color polymorphisms of natural lizards �18� also have
cyclically dominating three phenotypes and show alternating
wax-and-wane population densities. In evolutionary games,
the public-good game with volunteering, namely, the choice
of not joining the game, results in cyclic competition �19�.
The susceptible-infected-recovered-susceptible model of epi-
demiology and models with additional types of states also
include cyclic competition �4,20�. We focus on two specific
predator-prey models of such cyclic interaction, that is, the
standard rock-scissors-paper �RSP� model �7� and the May-
Leonard �ML� model �21�. These models have neutrally
stable or unstable coexistence solutions in well-mixed popu-
lations. Therefore, in a finite population, population dynam-
ics are eventually trapped by an absorbing state correspond-
ing to the dominance of one species �7,22�. We show that
heterogeneous degree distributions stabilize coexistence of
multiple types of individuals placed on networks.

II. ROCK-SCISSORS-PAPER DYNAMICS ON NETWORKS

A. Model

As a minimal model of cyclic competition, we consider
the standard RSP dynamics on networks with heterogeneous
contact rates. There are three species, which we call states,
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represented by rock, scissors, and paper; rock beats scissors,
scissors beat paper, and paper beats rock. Each vertex takes
state 0, 1, or 2. A pair of vertices may be connected by an
edge. The degree k of a vertex is the number of edges, or the
number of contacts with other vertices. State 1 outcompetes
state 0 by invading onto each neighboring state with state 0
at a rate of �. In other words, a vertex with state 0 changes
its state to 1 at a rate of �n1, where ni is the number of
vertices with state i in the neighborhood. Similarly, 1 �2�
turns into 2 �0� at a rate of �n2 �n0�. In an ecological context,
we are considering the limit that dispersion rates �=1,� ,��
are much larger than the natural death rate. We consider the
influence of death rates later with the ML model.

For a perfectly mixed population, the mean field theory
tells that there are an ensemble of neutrally stable limit
cycles surrounding a neutrally stable equilibrium corre-
sponding to coexistence of the three states. Therefore, the
coexistence solution is practically unstable in finite popula-
tions. The RSP dynamics with spatial structure, such as the
square lattice, accommodate many states each of which is
clustered in different loci �10–12�. Here we are interested in
a network mechanism that may enable stable coexistence.

B. Equilibrium

With dispersed degrees, vertices with different degrees
obey different state-transition dynamics. Let us denote by
�i,k the probability that a vertex with degree k takes state i
�=0,1 ,2�. The probability that a vertex adjacent to an arbi-
trary vertex takes state i is denoted by �i. This probability
does not generally agree with �i,k or its average over all the
vertices. This is because a vertex with more edges is more
likely to be selected as a neighbor. In fact, a neighbor has
degree k with probability kpk / �k�, where pk is the probability
that a vertex has degree k and �k�=�kpk is the mean degree
giving normalization. Therefore, �i=�kkpk�i,k / �k� �23�. Be-
cause each vertex is occupied by one of the three species,
namely, �0,k=1−�1,k−�2,k and �0=1−�1−�2, it suffices to
consider the density of state 1 and that of state 2. Noting that
the expected number of state-i neighbors of a vertex with
degree k is equal to k�i, we derive

�̇1,k = ��1 − �1,k − �2,k�k�1 − ��1,kk�2, �1�

�̇2,k = ��1,kk�2 − �2,kk�1 − �1 − �2� . �2�

For example, the first term in Eq. �1� corresponds to the
invasion of state 1 onto vertices with state 0. In the equilib-
rium, we have

��1,k
*

�2,k
* 	 =

��1
*

���1
* + ��2

*��1 − �1
* − �2

*� + ���1
*�2

*

��1 − �1
* − �2

*

��2
* 	 . �3�

The coexistence solution to Eq. �3� is given by

��1
*

�2
* 	 = ��1,k

*

�2,k
* 	 =

1

� + � + 1
�1

�
	 , �4�

for any k. The degree distribution does not affect the equi-
librium population densities �20�.

C. Stability of coexistence equilibrium

When pk=�k,�k�, each vertex has the same degree equal to
the mean �k�. This case corresponds to well-mixed popula-
tions. Then the coexistence is neutrally stable �e.g., Refs.
�11,21��, which underlies experimental and natural ecosys-
tems showing oscillatory population dynamics �16–18�.
Equation �2� indicates that the oscillation period is propor-
tional to 1/ �k�.

However, the stability of the coexistence and realized dy-
namics are considerably influenced by networks. To see this,
let us consider a two-point degree distribution given by pk
= p�k,k1

+ �1− p��k,k2
. On average, a total of np vertices have

degree k1 and n�1− p� vertices have degree k2. Equations �1�
and �2� for a network with the two-point degree distribution
define a four-dimensional dynamical system. We set �=�
=1 for simplicity, although generalization to other � and � is
straightforward. The characteristic equation evaluated at the
coexistence equilibrium �Eq. �4�� is represented by

x4 +
3k1k2

�k�
x3 + 3� k1k2�k1 + k2 − �k��

�k�
+

�k2�2

�k�2 	x2 + 9
�k2�
�k�

k1k2x

+ 9k1
2k2

2 = 0, �5�

where �k�=�kpk= pk1+ �1− p�k2 and �k2�=�k2pk= pk1
2+ �1

− p�k2
2. When k1=k2=k, we turn back to the ordinary mean

field case with neutrally stable oscillations: x=
3ki,
�−3±
3�k /2. More generally, the Routh-Hurwitz criteria for
Eq. �5� is

�H1� = 1,

�H2� = pk2
2��k� − k1/2�2 + �1 − p�k1

2��k� − k2/2�2 + 3k1
2k2

2/4 	 0,

�H3� = 81k1
2k2

2p�1 − p��k2 − k1�2��k2�2 + 2k1k2�k�2�/�k�4,

�H4� = 9k1
2k2

2�H3� , �6�

where �Hi� is the ith principal minor. The coexistence solu-
tion is stable when �H3 � , �H4 � 	0, that is, k1�k2 and p
�0,1. Dispersed contact rates stabilize coexistence.

D. Numerical results

We resort to numerical simulations to examine more gen-
eral networks and to be more quantitative about the effects of
degree dispersion. We compare different types of networks
with n=5000 vertices and �k�=10. The regular �R� random
graph corresponding to the ordinary mean field case is gen-
erated by the configuration model �14� with pk=�k,�k�. This is
a type of random graph in which every vertex has the same
degree �k�. We also use the Erdös-Rényi �ER� random graph,
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which has the Poisson degree distribution pk=e−�k��k�k /k!,
and the Barabási-Albert �BA� scale-free network with the
parameter m��k� /2=5, which yields pk�k−3 �k
m� and
pk=0 �k�m� �13�.

Typical population dynamics for these networks are
shown in Figs. 1�a�–1�c�. On the R random graph, the coex-
istence solution is neutrally stable in theory. Combined with
a finite-size effect, the amplitude of the dynamical popula-
tion density becomes progressively large in an oscillatory
fashion. Eventually, one state dominates the whole network
in an early stage �Fig. 1�a��. On the ER random graph �Fig.
1�b�� and the BA model �Fig. 1�c��, coexistence occurs ow-
ing to the distributed k. The fluctuations in the population
density is smaller on the BA model than on the ER graph,
because the BA model has a broader degree distribution.

To be more systematic, we compare population density
fluctuation in the coexistence equilibrium. The fluctuation is
measured by the standard deviation of the time series �i �see
Fig. 1�b� and 1�c�� after transient, averaged over i=0,1, and
2. Larger fluctuation means more unstable coexistence, and
we examine how the size of the fluctuation depends on the
amount of degree dispersion. In addition to the networks
examined above, we use two types of networks that can cre-
ate a range of degree dispersion. The first is the network with
the two-point degree distribution. The standard deviation of
the degree 
�k2�− �k�2=
p�1− p� �k1−k2�. By varying k1 /k2

with p=0.9 and �k�=10 fixed, we can systematically create
networks with a variety of 
�k2�− �k�2. The second is the
network that has Gaussian pk with mean �k�, whose

�k2�− �k� can be also modulated. The results are summa-
rized in Fig. 1�d� for four types of networks �ER, BA, two-
point, and Gaussian�, excluding the R random graph because
it does not sustain coexistence. Regardless of the network
type, more dispersed degree distributions generally lead to
more stable coexistence.

In the mean field case, a smaller network with a stronger
finite-size effect tends to drive the population dynamics to
the absorbing equilibrium where only one state survives �22�.
The network effect on stability of coexistence is more mani-
fested in this regime. In Fig. 2, we show survival probabili-
ties for some networks with n=200, where the survival is
defined by existence of all the three states. Figure 2 is con-
sistent with Fig. 1�d�; coexistence is sustained for a longer
period on networks with larger degree dispersion.

III. MAY-LEONARD DYNAMICS ON NETWORKS

A. Model and equilibrium

Since neutrally stable oscillations of the RSP model may
be singular phenomena, we analyze another competition
model proposed by May and Leonard �21�. The ML model
represents dynamics of cyclically competing three species
with natural death. Because of the natural death, vertices can
take the vacant state. In a well-mixed population, the coex-
istence equilibrium and the periodic oscillation are both un-
stable. A trajectory of the population density approaches het-
eroclinic orbits on which at least one of the three species is
extinct. Theoretically, one species is transiently and alterna-

tively dominant with ever increasing periods in an infinite
population. Practically, one species eventually wins due to
the finite-size effect.

As an interacting particle system, the ML model is a four-
state system, with state 0 representing the vacant site and 1,
2, and 3 representing cyclically dominating states �12�. The

FIG. 1. RSP dynamics on networks with n=5000 and �k�=10.
The initial condition is given by the Bernoulli distribution with �0

=0.7 and �1=�2=0.15, where �i is the proportion of vertices that
take state i. The densities �0 �thin lines�, �1 �moderate lines�, and �2

�thick lines� are shown for �a� the R random graph. For �b� the ER
random graph and �c� the BA model of the same size, only �0 is
shown for clarity. �d� Fluctuation of population density as a func-
tion of the standard deviation of the vertex degree 
ER, triangle;
BA, horizontal line ���k2�− �k�2�1/2=157.8�; Gaussian pk, crosses;
two-point pk, circles�. The variance of �i from time 150 through 300
averaged over i=0,1, and 2 defines the density fluctuation.
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ML dynamics with heterogeneous contact rates are written as

�̇1,k = �0,kk�1 − �� − 1��2,kk�1 − �
 − 1��1,kk�3,

�̇2,k = �0,kk�2 − �� − 1��3,kk�2 − �
 − 1��2,kk�1,

�̇3,k = �0,kk�3 − �� − 1��1,kk�3 − �
 − 1��3,kk�2, �7�

where �0,k=1−�1,k−�2,k−�3,k. The first term in each equation
indicates the rate at which a vacant site becomes colonized
by state i �1� i�3�. Supposing that ��1 and 
	1, the
second term and the third term of each equation represent the
population increase and decrease due to the cyclic competi-
tion, respectively. For example, in the first equation, state 1
outcompetes 2, whereas 1 is outcompeted by 3. Equation �7�
has a coexistence equilibrium given by

�i,k
* = �i

* = �� + 
 + 1�−1 �i = 1,2,3� �8�

for all k. With pk=�k,�k�, the eigenvalues of the Jacobian ma-
trix evaluated at ��1,k

* , �2,k
* , �3,k

* �, disregarding a prefactor
��+
+1�−1, are x=−�1+�+
� ,−1+ ��+
� /2±
3��
−
�i /2 �21�. When �+
=2, the ML model is essentially the
same as the RSP model, and the coexistence is neutrally
stable �x=−3, ±
3��−
�i /2�. When �+
	2 and ��1 �or

�1�, the coexistence equilibrium is an unstable spiral, and
the trajectory tends to a homoclinic orbit.

B. Stability of coexistence equilibrium

To investigate the network effect, we again consider
the two-point degree distribution pk= p�k,k1

+ �1− p��k,k2
.

The Jacobian matrix at ��1,k1

* ,�1,k2

* ,�2,k1

* ,�2,k2

* ,�3,k1

* ,�3,k2

* �t,
where t denotes the transpose, is a block circulant
matrix. Accordingly, the eigenmode has the form
�v1 ,v2 ,�v1 ,�v2 ,�2v1 ,�2v2�t, v1 ,v2�C, where � is any solu-
tion to �3=1. The corresponding characteristic equation is
reduced to

x2 + ��
 + �� + �2��k1 + k2� − �1 − �2��
 − 1�
�k2�
�k�

	x

+ ��2 + 
2 − �
 − � − 
 + 1��2k1k2 = 0. �9�

For �=1, Eq. �9� is a real equation, and two eigenvalues have
the same real part that is equal to −��+
+1��k1+k2� /2�0.
Because an eigenvalue of Eq. �9� for �=exp�2�i /3� is con-
jugate of one for �=exp�4�i /3�, it suffices to set �
=exp�2�i /3�. The larger real part of the solution to Eq. �9� is
plotted in Fig. 3 for various p and 0�k1 /k2�1. The coex-
istence equilibrium is stabilized with negative real parts of
the eigenvalues. This occurs when k1 /k2�0.1 and p
=0.9,0.95. In this situation, a small number �=n�1− p�� of
hubs have a large degree �=k2� in comparison with most
vertices with degree k1. This is reminiscent of long-tail pk
typical of the scale-free networks. Excess heterogeneity
�k1 /k2�0.05� destroys coexistence. In this situation, a ma-
jority of vertices with degree k1 are effectively isolated, and
the network is close to the mean field case, or the R random
graph with k=k2. When p�0.5, the heterogeneity does not
cause stability irrespective of k1 /k2. This is because the con-
tribution of the smaller subpopulation �proportion p� with the
smaller degree k=k1��k2� to dynamics is marginal, which
again results in effectively homogeneous networks with k
=k2.

C. Numerical results

For numerical simulations, we note that, in Eq. �7�, a va-
cant site �state 0� is replaced by state i �1� i�3� at a rate of
ni. A vertex in state 1 �2, 3� kills a neighboring state 2 �3, 1�
at a rate of 
−1. Then, the neighboring vertex is colonized
by state 1 �2, 3� with probability �1−�� / �
−1� and turns
empty �state 0� otherwise �12�.

Dynamics for the R and ER random graphs with n
=5000 and �k�=10 are shown in Figs. 4�a� and 4�b�, respec-
tively. Because the stability condition for the ML model is
more severe than that for the RSP model, one state shortly
overwhelms the others on the ER as well as R random graph.
However, the transients for the ER random graph, whose
degrees are more dispersed than the R random graph, are
longer. The BA model and the networks with two-point pk

FIG. 2. Survival probabilities for the R random graph, the ER
random graph, the BA model, and the networks with Gaussian pk

with standard deviation 2 and 4 �corresponding to the crosses
marked by arrows in Fig. 1�d��. We set n=200 and �k�=10 for all
the networks. The survival probabilities are calculated based on
1000 runs.

FIG. 3. Stability of the coexistence solution of the ML model.
Real parts of the largest eigenvalues of the Jacobian matrix obtained
from Eq. �9� with �=2/3 and 
=2 are presented for p=0.1 �thin-
nest line�, p=0.3, p=0.5, p=0.7, p=0.9, and p=0.95 �thickest line�.
We set �k�=1 for normalization.
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with parameters realizing the stable Jacobian matrix �but not
the networks with Gaussian pk� yield coexistence. Similar to
the RSP dynamics, the amount of degree dispersion is
strongly correlated with the amount of density fluctuation
and stability of coexistence, irrespective of the network type
�Fig. 4�c��.

IV. DISCUSSION

A. Summary of the results

We have examined population dynamics with cyclic
dominance relationships on networks. The steady population
density is independent of degree distributions of networks.
However, stability of coexistence equilibria and dynamics
depend considerably on networks. Heterogeneity in degree
distributions facilitates stable coexistence of different pheno-
types. As touched upon in Sec. I, coexistence of competing
species is desirable in, for example, ecological communities

�biodiversity� and evolutionary games �survival of altruistic
players�.

B. Relations to synchronization of coupled oscillators

The present mechanism of coexistence is related to syn-
chronization of coupled oscillators. With spread degree dis-
tributions, each �i,k evolves at a speed proportional to k, and
�i,1, �i,2 , . . . are coupled by a sort of mean field feedback �i.
Then, the population dynamics are analogous to those of an
ensemble of phase oscillators coupled by mean field interac-
tion. In theory, coupled phase oscillators become desynchro-
nized when the intrinsic frequency of the oscillators has a
broad distribution relative to the coupling strength �24�. Os-
cillators with heterogeneous intrinsic frequencies correspond
to vertices with heterogeneous k. In terms of competition
dynamics on networks, asynchrony corresponds to stable co-
existence of species where synchronous oscillations �large
fluctuations in time� of the population density was sup-
pressed. Desynchronization is known to suppress neutrally
stable or unstable oscillations in ecological models with
patchy populations, heterogeneous birth rates, and weak ag-
gregation �8�. Heterogeneity in degree distributions serves to
stable coexistence via desynchronization even without other
kinds of heterogeneity. The correspondence between asyn-
chrony and coexistence may be exported to more general
models, particularly to ones showing oscillations in well-
mixed populations; oscillatory population densities are remi-
niscent of cyclic competition.

C. Difference from spatial mechanisms of coexistence

The scenario to coexistence unraveled here is distinct
from those based on spatial structure, heterogeneous envi-
ronments, or heterogeneous individuals. In patchy habitats
with heterogeneous environments or small diffusion �6�, and
in spatial structure with limited diffusion �9–12�, multiple
species can coexist by forming locally high densities of con-
specifics in different subspaces �10–12�. This is the spatial
mechanism of coexistence. In networks with dispersed de-
grees, multiple species can coexist on a network in a mixed
manner without spatial segregation.

Real networks of contacts are equipped with the cluster-
ing property, as is the case for the regular lattices and small-
world networks, and high clustering elicits the spatial mecha-
nism of coexistence. In addition, many networks own broad
degree distributions represented by the scale-free distribu-
tions �13,14,23�. The mechanism proposed in this work can
cooperate with the spatial mechanism to promote stability of
coexistence.

D. Difference from contagion dynamics

There are many possible rules for interacting particle sys-
tems. In contagion processes, such as the percolation, the
susceptible-infected-recovered �SIR� model, and the contact
process susceptible-infected-susceptible �SIS� model, degree
dispersion affects dynamical aspects by, for example, accel-
erating disease propagation in initial stages �25�. More fun-
damentally, however, epidemic thresholds �critical infection

FIG. 4. ML dynamics on networks with n=5000, �k�=10, �
=2/3, and 
=2. The initial condition is given by �0=0, �1=�2

=0.25, and �3=0.5. The R random graph �a� and the ER random
graph �b� do not allow stable coexistence ��0, dotted lines; �1, thin
solid lines; �2, moderate solid lines; �3, thick solid lines�. �c� Fluc-
tuation of population density 
BA, horizontal line ���k2�− �k�2�1/2

=157.8�; two-point pk, circles�, defined by the variance of �i from
time 150 through 300 averaged over i=1,2, and 3.
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rates� are proportional to �k� / �k2�. Then, disease propagation
on a global scale is more likely to occur on networks with
more heterogeneous contact rates with small �k� / �k2� than on
networks with rather homogeneous degrees such as the regu-
lar lattices and the random graph �4,23�. In contagion dy-
namics, the network influences the stationary state in addi-
tion to the dynamics, which contrasts to our results for the
competition dynamics.

Generally speaking, the positions of equilibria move when
we cannot neglect at least one type of state-transition event
whose occurrence rate is independent of neighbors’ states ni
�20�. Examples are spontaneous recovery and mutation. By

contrast, the equilibria are invariant if all the state transitions
are controlled by the neighbors’ states, as is the case for the
RSP model, the ML model, and also the voter model. How-
ever, the degree distribution does influence the stability of
coexistence and hence the whole population dynamics. Our
results are generalized to other population dynamics in
which the rates of spontaneous transitions can be ignored.
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